

SOLUCIONES EN BALASTROS HID

COOPER Crouse-Hinds

Nuestra experiencia se ve reflejada en la calidad de nuestros balastros, el sello de garantía de CROUSE-HINDS

Lámparas de Vapor de Mercurio

Al energizar la lámpara, el voltaje de arranque aplicado se encuentra entre los dos electrodos. Con esto se obtiene la ionización del gas inerte (generalmente Argon) que se encuentra dentro del tubo de descarga produciendo un pequeño arco, el cual esta limitado por una resistencia en serie con el electrodo que controla la corriente. Al ionizarse suficientemente el argon y el mercurio, se produce el arco entre los dos electrodos de operación calentando la lámpara hasta que el mercurio este completamente vaporizado. Una vez estabilizado el arco, el potencial entre los electrodos de arranque y de operación es tan bajo que no puede mantenerse el arco, por lo cual la corriente de la lámpara fluye a través de los electrodos de operación.

Nota: Debido al alto índice de contaminación de este producto en algunos países se ha determinado descontinuar su fabricación y su uso. Por los que se sugiere empezar a contemplar el cambio a otro tipo de lámparas.

Lámparas Aditivos Metálicos

Estas lámparas son similares a las de vapor de mercurio. Solo que en este caso tienen algunos aditivos metálicos en forma de yoduros, principalmente talio, sodio y escandio, que al vaporizarse se obtiene un mayor espectro visible, lográndose un mejor rendimiento cromático, así como una mayor eficiencia.

Las lámparas de aditivos metálicos se pueden obtener con cubierta de fósforo o claras. En la actualidad son muy utilizadas en iluminación de interior y exterior por su luz blanca y gran eficiencia.

Lámparas de vapor de sodio de alta presión

La producción de luz es básicamente la misma que en una lámpara de aditivo metálico. El arco comparativamente más largo es sostenido dentro de una atmósfera de vapor de sodio y mercurio encontrando que en estas lámparas de sodio de alta presión no hay radiación mercurial (ultravioleta) en la luz emitida.

Estas fuentes tienen una vida nominal alta y un excelente sostenimiento de lumens (90% como media a lo largo de su vida), proporcionando una clara ventaja en economía comparado con otros sistemas con lámparas flourecentes, mercuriales o aditivos metálicos.

Cuadro comparativo entre vapor de mercurio, aditivos metálicos y sodio alta presión

	Vapor de Mercurio	Aditivos Metálicos	Sodio Alta Presión
Eficacia (lm/w)	49 - 63	80 - 110	82 - 140
Vida Promedio (horas)	24000	12000	24000
Potencia (W)	175 - 1000	175 - 1000	70 - 1000

Todos nuestros balastros cuentan con la certificación ANCE. Garantizando la seguridad, protección al medio ambiente y funcionalidad.

Balastros D.A.I

El balastro es un dispositivo que suministra a las lámparas de descarga eléctrica la tensión de arranque y controla los parámetros eléctricos (corriente y tensión) para su adecuada operación. De esta manera el balastro suministra a la lámpara:

- La tensión de arranque eléctrica necesaria para iniciar el arco eléctrico y sostener el alto voltaje requerido por la lámpara durante el calentamiento.
- La i mpedancia ó "resistencia positiva" que controla y r egula la corriente demandada por la lámpara.

Criterios de Selección

• Tiempo de arranque y reencendido.

• Tipo de aplicación:

Industrial en interiores, exteriores, alumbrado público ó para áreas clasificadas como peligrosas, dentro de una envolvente clasificada.

• Variaciones de la tensión eléctrica:

5 % ó 10 % de la nominal.

• Corrientes de arranque:

Mayor o menor a la corriente de operación de los balastros.

• Costo del Balastro:

Inicial, de operación y de mantenimiento.

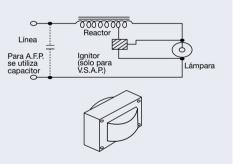
Lámpara	Arranque (Minutos)	Reencendido (Minutos)
Vapor de Mercurio	5 a 7	3 a 6
Aditivos Metálicos	3 a 4	10 a 20
Vapor de Sodio A.P.	3 a 4	1/2 a 1

Tipos de Circuitos

Existen diferentes tipos de balastros para lámparas D.A.I. ya que cada tipo de lámpara requiere su propio balastro puesto que varían sus características en cuanto a la forma de onda, regulación de voltaje, corriente y requerimientos de arranque.

Existen diferentes tipos de circuitos:

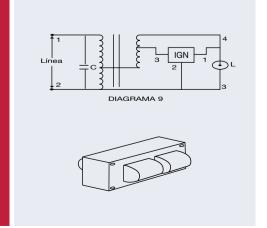
Tipo Reactor


Es una "bobina", colocada en serie con la lámpara. La inductancia en la bobina se concentra únicamente en la corriente para sostener la operación de la lámpara. La tensión de alimentación debe ser al menos igual a la tensión mínima requerida para arrancar y operar adecuadamente la lámpara.

Las características del balastro tipo reactor son:

- Un cambio de ±5% en la tensión de alimentación ocasiona variaciones de potencia en la lámpara de ±12%.
- Una variación mayor de ±5% en la tensión de alimentación puede apagar la lámpara ó sobrecargarla reduciendo la vida de esta.
- La corriente de arranque en la línea es mayor que la de operación.
- Bajo costo de adquisición.
- Tamaño y peso menor.
- Baio o alto factor de potencia.
- La clasificación de aislamiento es Clase H (180 °C).
- Capacitores clase 105 °C.
- Ignitor Clase 105 °C (Sólo V.S.A.P.).
- Cumplimiento estricto con normas ANSI.
- Operación silenciosa.
- Caras planas para instalarse con facilidad en cualquier luminaria.

NOTA: Cuando la regulación de la tensión eléctrica es mala (mayor al ±5%), no se debe usar este tipo de balastro.


Tipo Alta Reactancia

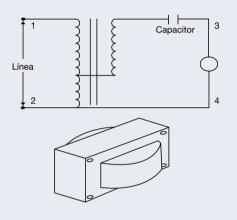
Muy similar en aplicación y comportamiento al tipo reactor. Las características principales son:

- Menores pérdidas que los tipos regulados.
- Fabricado en bajo y alto factor de potencia.
- Compacto, económico y eficiente.
- Mayor precio que los reactores pero menor que los regulados.
- Un cambio de ±5% en la tensión de alimentación ocasiona variaciones de potencia en la lámpara de ±12%.

Se puede fabricar en bajo ó alto factor de potencia.

Cuando la regulación de la tensión de alimentación es mala (mayor al ±5%), no se debe usar este tipo de balastro.

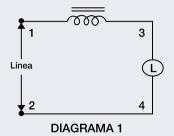
Tipo Auto transformador Autorregulado (CWA)

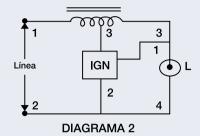

Este balastro cuenta con un capacitor en serie con la lámpara para mejorar el control de potencia. Cuando el principal elemento controlador de un balastro es un capacitor, se le denomina "Tipo en adelanto". Si el elemento controlador es inductivo el balastro es de "Tipo en atraso". La corriente de arranque de este balastro es menor que la corriente de operación.

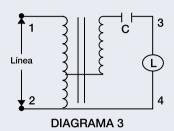
Sus características son:

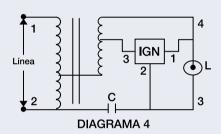
- Alto factor de potencia.
- La variación en la tensión de alimentación del ±10% reflejará un cambio en la potencia de lámpara de solamente el ±5%.
- Puede soportar caídas de tensión de hasta el 50% en períodos de corta duración.
- Buen costo de adquisición.
- Único balastro reconocido en México para luminarios Crouse Hinds de áreas clasificadas como peligrosas, por su excelente diseño y control de los parámetros eléctricos de la lámpara sin variar el "T-rating" del luminario.
- La clasificación de aislamiento es Clase H (180 °C).
- Ignitor Clase 105 °C que proporciona un pulso durante el encendido de 2500 V a 105 °C dependiendo de la potencia de la lámpara. (Sólo V.S.A.P.)
- Cumplimiento estricto con normas ANSI.
- Operación silenciosa.
- Caras planas para instalarse en cualquier luminario.

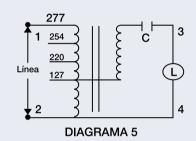
Este balastro es el más requerido en lugares donde las variaciones de la tensión de alimentación son muy grandes, ya que soportan dichas variaciones dando mayor vida a la lámpara y al propio luminario.

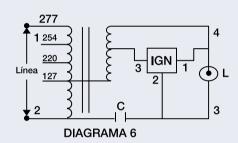


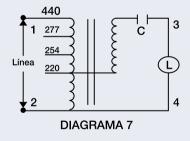

Precaución con los Balastros

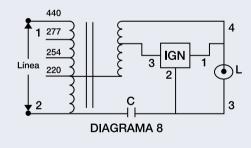

- a) Usar balastro correcto para lámpara correspondiente.
- b) Usar balastro adecuado para la tensión de alimentación adecuada.
- c) Transportar y sujetar correctamente el balastro.
- d) Tener la precaución de seleccionar adecuadamente los taps cuando son balastros cuadrivolt, al conectar eléctricamente.
- e) Sujetar tanto balastro como capacitor (ignitor) firme y seguramente.

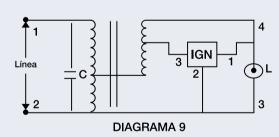


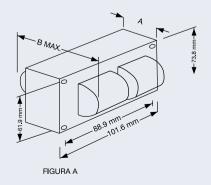

Diagramas de conexión

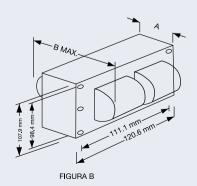








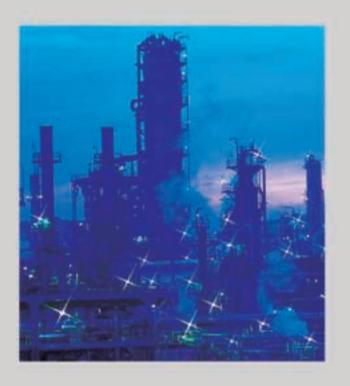




INFORMACIÓN TÉCNICA DE BALASTROS

					Lán	npara	Tipo de	Factor de	Factor de		Diagrama d
Código	Descripción	Tipo	Tensión de Línea (V)	Corriente de Línea (A)	Tipo	Potencia	Balastro	Potencia Alto	Potencia Normal	Capacitor	Conexión
				ADITIVOS META	LICOS	'					
8449D19G07127WB	175 AMWL	L	127/220/254/277 Vc.a. ± 10%	1.70/0.96/0.84/0.77 A	M-57	175W	CWA	•		10 µF	5
8449D19G02220	175 AMWB	В	220 Vc.a. ± 10%	0,96 A	M-57	175W	CWA	•		10 µF	3
11579332	175 AMWG	G	480 Vc.a. ± 10%	0,46 A	M-57	175W	CWA	•		10 µF	4
1004D17G02220	250 AMWB	В	220 Vc.a. ± 10%	1,35 A	M-58	250W	CWA	•		15 µF	3
1004D17G07127	250 AMWL	L	127/220/254/277 Vc.a. ± 10%	2,42/1,35/1,21/1,11 A	M-58	250W	CWA	•		15 µF	5
1000D14G03220WB	400 AMWB	В	220 Vc.a. ± 10%	2,25 A	M-59	400W	CWA	•		24 µF	3
1000D14G09440	400 AMWM	M	220/254/277/440 Vc.a. ± 10%	2,25/1,96/1,80/1,13 A	M-59	400W	CWA	•		24 µF	7
8437D60G22220	1000 AMWB	В	220 Vc.a. ± 10%	5,00 A	M-47	1000W	CWA	•		24 µF	3
8437D60G25440	1000 AMWM	M	220/254/277/440 Vc.a. ± 10%	5,00/4,35/4,00/2,50 A	M-47	1000W	CWA	•		24 µF	7
				VAPOR DE S	ODIO						
11588399	70 SAWG	G	480 Vc.a. ± 10%	0,24 A	S-62	70W	CWA	•		28 μF	2
11687590	70 SAWB	В	220 Vc.a. ± 10%	0,42 A	S-62	70W	CWA	•		28 µF	4
11691338	70 SAWL	L	127/220/254/277 Vc.a. ± 10%	0,70/0,42/0,35/0,32 A	S-62	70W	CWA	•		28 μF	6
11588433	70 SARA	Α	127 Vc.a. ± 5%	1,60 A	S-62	70W	Reactor		•	No lleva capacitor	2
8449D71G11127	70 SAHA	A	127 Vc.a. ± 5%	0,70 A	S-62	70W	Reactor	•		30 μF	2
1002D32G22220	100 SAWB	В	220 Vc.a. ± 10%	0,59 A	S-54	100W	CWA	•		40 µF	4
1002D32G26127	100 SAWL	L	127/220/254/277 Vc.a. ± 10%	0,97/0,59/0,48/0,44 A	S-54	100W	CWA	•		40 µF	6
11585028	100 SAWG	G	480 Vc.a. ± 10%	0,25 A	S-54	100W	CWA	•		40 μF	2
8449D71G32127	100 SARA	A	127 Vc.a. ± 5%	2,10 A	S-54	100W 100W	Reactor		•	No lleva capacitor	2
11533105 1002D32G32220	100 SAHA 150 SAWB	A B	127 Vc.a. ± 5%	0,97 A	S-54	150W	Reactor	•		40 μF	2
	150 SAWB 150 SAWL		220 Vc.a. ± 10% 127/220/254/277 Vc.a. ± 10%	0,85 A 1,47/0.85/0.73/0.67 A	S-55 S-55	150W	CWA	•		55 μF	6
1002D32G36127 11579118	150 SAWL	L G	480 Vc.a. ± 10%	1,47/0,85/0,73/0,67 A 0.45 A	S-55 S-55	150W	CWA	•		55 μF 55 μF	2
11579116	150 SAWG	A	127 Vc.a. ± 10%	0,45 A 3.20 A	S-55	150W	Reactor	•	•	No lleva capacitor	2
8447D93G02220	150 SARA 150 SAPB	В	220 Vc.a. ± 5%	0.90 A	S-55	150W	Alt. Reac			10 µF	9
11573522	150 SAFB	A	127 Vc.a. ± 5%	1.47 A	S-55	150W	Reactor	·		52 μF	2
1006D76G07127WB	250 SAWL	L	127/Vc.a. ± 3/6	2,46/1,45/1,23/1,13 A	S-50	250W	CWA	•		35 μF	6
1006D76G08220	250 SAWE	В	220 Vc.a. ± 10%	1,45 A	S-50	250W	CWA	•		35 µF	4
11579320	250 SAWG	G	480 Vc.a. ± 10%	0.64 A	S-50	250W	CWA	•		35 µF	2
11611795	250 SAHB	В	220 Vc.a. ± 5%	1.40 A	S-50	250W	Reactor			35 uF	3
8449D40G32220	400 SAWB	В	220 Vc.a. ± 10%	2.12 A	S-51	400W	CWA	•		48 µF	4
8449D40G39440	400 SAWM	М	127/220/254/277/440 Vc.a. ± 10%	3,77/2,12/1,90/1,75/1,10 A	S-51	400W	CWA	•		48 µF	8
11574115	400 SAWG	G	480 Vc.a. ± 10%	1,0 A	S-51	400W	CWA	•		48 µF	2
				VAPOR DE MER	CURIO						
11577364	100 VMWB	В	220 Vc.a. ± 10%	0.59 A	H-44	100W	CWA	•		10 µF	3
11619902	100 VMWL	L	127/220/254/277 Vc.a. ± 10%	1,00/0,59/0,54/0,47 A	H-44	100W	CWA	•		10 µF	8
8445D80G07127WB	175 VMWL	L	127/220/254/277 Vc.a. ± 10%	1.69/0.98/0.84/0.77 A	H-39	175W	CWA	•		17,5 µF	5
8445D80G02220	175 VMWB	В	220 Vc.a. ± 10%	0,98 A	H-39	175W	CWA	•		17,5 µF	3
11585034	175 VMWG	G	480 Vc.a. ± 10%	0,5 A	H-39	175W	CWA	•		17,5 µF	2
11588450	175 VMRB	В	220 Vc.a. ± 5%	1,50 A	H-39	175W	Reactor		•	No lleva capacitor	1
11585865	175 VMHB	В	220 Vc.a. ± 5%	0,92 A	H-39	175W	Reactor	•		17,5 μF	1
1004D17G02220WB	250 VMWB	В	220 Vc.a. ± 10%	1,35 A	H-37	250W	CWA	•		15 µF	3
1004D17G07127WB	250 VMWL	L	127/220/254/277 Vc.a. ± 10%	2,30/1,35/1,15/1,06 A	H-37	250W	CWA	•		15 µF	5
11579306	250 VMWG	G	480 Vc.a. ± 10%	0,75 A	H-37	250W	CWA	•		15 µF	2
11611931	250 VMRB	В	220 Vc.a. ± 5%	2,10 A	H-37	250W	Reactor		•	No lleva capacitor	1
11579262	250 VMHB	В	220 Vc.a. ± 5%	1,33 A	H-37	250W	Reactor	•		16 µF	1
1000D14G02220	400 VMWB	В	220 Vc.a. ± 10%	2,10 A	H-33	400W	CWA	•		24 µF	2
11585038	400 VMWG	G	480 Vc.a. ± 10%	1,0 A	H-33	400W	CWA	•		24 µF	2
11680130	400 VMWM	М	220/254/277/440 Vc.a. ± 10%	2,10/1,84/1,70/1,06 A	H-33	400W	CWA	•		24 µF	1
11577451	1000 VMWB	В	220 Vc.a. ± 10%	5,0 A	H-36	1000W	CWA	•		24 µF	3
11585041	1000 VMWG	G	480 Vc.a. ± 10%	2,5 A	H-36	1000W	CWA	•		24 µF	2
11679773	1000 VMWM	M	440 Vc.a. ± 10%	2.50 A	H-36	1000W	CWA	•		24 µF	1 1

OTROS BALASTROS


Código Descripción			Corriente de Línea (A)	Lámpara				Factor de		
	Tipo	Tension de Línea (V)		Tipo	Potencia	Tipo de Balastro	Factor de Potencia Alto	Potencia Normal	Capacitor	
				ADITIVOS META	ALICOS					
11610312	250 AMWG	G	480 Vc.a. ± 10%	0,75 A	M-58	250W	CWA	•		15 µF
11694133	250 AMWF	F	440 Vc.a. ± 10%	0,71 A	M-58	250W	CWA	•		15 µF
11695547	250 AMWM	М	220/254/277/440 Vc.a. ± 10%	1,42/1,28/1,13/0,71 A	M-58	250W	CWA	•		15 µF
11573772	400 AMWG	G	480 Vc.a. ± 10%	1,0 A	M-59	400W	CWA	•		24 µF
11680561	400 AMWL	L	127/220/254/277 Vc.a. ± 10%	3,81/2,20/1,90/1,74 A	M-59	400W	CWA	•		24 µF
11573959	1000 AMWG	G	480 Vc.a. ± 10%	2,5 A	M-47	1000W	CWA	•		24 µF
				VAPOR DE S	ODIO					
11588494	50 SARA	Α	127 Vc.a. ± 5%	1,3 A	S-68	50W	Reactor		•	No lleva capacit
11585522	50 SAHA	Α	127 Vc.a. ± 5%	0,55 A	S-68	50W	Reactor	•		17,5 µF
11611935	250 SARB	В	220 Vc.a. ± 5%	3,05 A	S-50	250W	Reactor		•	No lleva capaci
11680593	400 SAWL	L	127/220/254/277 Vc.a. ± 10%	3,77/2,17/1,88/1,73 A	S-51	400W	CWA	•		48 µF
				VAPOR DE MER	CURIO					
11691695	175 VMWA	Α	127 Vc.a. ± 10%	1,75 A	H-39	175W	CWA	•		17,5 µF
11691691	175 VMWE	Е	127 Vc.a. ± 10%	0,77 A	H-39	175W	CWA	•		17,5 µF
11691694	175 VMWM	M	220/254/277/440 Vc.a. ± 10%	1,00/0,87/0,79/0,50 A	H-39	175W	CWA	•		17,5 µF
11680154	250 VMWA	Α	127 Vc.a. ± 10%	2,40 A	H-37	250W	CWA	•		15 µF
11680158	250 VMWE	Е	277 Vc.a. ± 10%	1,06 A	H-37	250W	CWA	•		15 µF
11687832	250 VMWM	М	220/254/277/440 Vc.a. ± 10%	1,38/1,20/1,10/0,69 A	H-37	250W	CWA	•		15 µF
11680133	400 VMWE	E	277 Vc.a. ± 10%	1,09 A	H-33	400W	CWA	•		24 µF
11680162	400 VMWA	Α	127 Vc.a. ± 10%	3,6 A	H-33	400W	CWA	•		24 µF
11679777	400 VMWF	F	440 Vc.a. ± 10%	1,09 A	H-33	400W	CWA	•		24 µF

Interpretación del antepenúltimo digito de voltaje de operación. A = 127 V B = 220 V G = 480 V

L = 127/220/254/277 V

M = 220/2547/277/440 V

Para solicitar Balastro sin herraje cambie los dígitos H1 ó H2 (según sea el caso) por H0

Oficinas de ventas en México

México, D,F.

TEL. (55) 5804-4000 FAX. (55) 5804-4019 ventascentromex@cooperindustries.com

Hermosillo, Sonora TEL. (662) 3015-577

ventashermosillo@cooperindustries.com

Guadalajara, Jalisco

TEL. (33) 3560-1230 FAX. (33) 3880-5039 ventascchgdl@cooperindustries.com

Cd. Del Carmen, Campeche

CEL. (938) 1368-264 TEL. (938) 1182-011 ventasdelcarmen@cooperindustries.com Monterrey, Nuevo León

TEL. (81) 8133-6939 FAX. (81) 8133-6938 ventascchmty@cooperindustries.com

Mérida, Yucatán

TEL. (999) 188-0654 (999) 233-3090 ventasmerida@cooperindustries.com Villahermosa, Tabasco TEL. (99) 3316-8708

ventasvillah@cooperindustries.com

Coatzacoalcos, Veracruz TEL. (921) 2187-730

ventascoatza@cooperindustries.com

Oficinas de ventas en Centro y Sudamérica

Colombia

TEL. (57-1) 676-9800 FAX. (57-1) 670-0376 ventascic@cooperindustries.com

Resto Sudamérica

TEL. (52-55) 5804-4003 FAX. (52-55) 5804-4019

ventassudamerica@cooperindustries.com

Guatemala

TEL. (502) 4026-9460 FAX. (552) 5804-4019 ventasguatemala@cooperindustries.com

Ecuador

TEL. (593) 9252-8817

ventasecuador@cooperindustries.com

Venezuela

TEL, (58) 416-811-5654

ventasvenezuela@cooperindustries.com

Lima, Perú

TEL: (51 1) 9823-41352

ventasperu@cooperindustries.com

Panamá

TEL. (507) 6468-3895

ventaspanama@cooperindustries.com

Santiago, Chile

TEL: (56) 06-342-6020

ventaschile@cooperindustries.com

Distribuidor Autorizado

Edición Octubre 2012

www.crouse-hindslatam.com www.cooperindustries.com

01 800-2244637 01 800-CCHINDS

